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The Navier-Stokes equations of motion of a viscous fluid may be derived from considera- 

tions of the kinetic theory of fluids and gases for systems of low density, or consisting of 

spherical molecules only [I and 21 . The stress tensor of a viscous fluid is in the general 

case antisymmetric. A model of a continuous medium, having an antisymmetric stress 
tensor, was suggested in [13. The mechanical behavior of ttre medium was defined sim- 

ultaneously by means of the usuaf velocity field, and of the field of internal spin of 

particles constituting a “point” of the physical continuum. An axial tensor of second 
rank defining the internal couple-stresses was introduced into the considerations in Cl]. 
together with the antisymmetric tensor of force-stresses. Characteristic rheology equa- 

tions and equations of motion of a viscous fluid with relaxation properties were obtained 
in [l], on the assumption char couple-stresses exert work on the inner spin transfations 
only. It was also shown in that work that, if the couple-stresses in a liquid or gas could 

be neglected, the physical properties of the medium would be defined by the usual vis- 
cosity coefficient, the coefficient of rotational viscosity, and by the relaxation time , 
A more general model of a structured continuum was suggested in [3 and 41, 

A medium having polarizing properties was considered in [3]* in which external mass- 
couples of an electromagnetic nature were considered together with the antisymmetri~ 

stress tensor and the couple-stresses, A detailed analysis of a model of a dielectric 
liquid in an electric- field is given in [4], 

A linear model of a polarizing dielectric is constructed in the present paper on the 
assumption that the stress tensor symmetric part is dependent on the symmetric part of 
the velocity deformation tensor only, while the tensor of couple-stresses is assumed to 
be symmetric, and ‘dependent on the symmetric part of the tensor-gradient of angular 
velocity of the inner spin of particles only, 

Real flows were considered in [4] under the condition that at their rigid boundaries 

either the stress tensor antisymmetric part, or the vector of inner spin angular velocity 
are zero. 

A variant of a structured continuum is considered below. Its characteristics are, in 
certain respects, more general than those of the continua considered in [l to 41. 

This model is constructed on the assumption that the couple-stresses do not exert work 
on internal spin translations, while exerting such on external translations within the 
volume. In the general case, the force and couple stresses dyadics of this model are 
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antisymmetric, the model is subject to relaxation. and is characterized by thermome- 

chanical effects. 

The model analyzed here coincides in one of its limiting case.s with that of Grad’s 

[l and 21, while in another, it is characterized by the usual Newtonian viscosity in shear, 

and the viscosity at local bending - twisting. 

We shall consider an isotropic material continuum at each point of which are known 

the translation velocity vector v , and the vector of angular velocity of spin UJ. We 

shall assume that a mass-force vector f , and a vector of external mass-couple c are 

applied at each point of an arbitrary volume I/. Force-stresses t 11 and couple-stresses 

m, act at the surface s of the volume I/. 

We write the equations of mass conservation, and the equations of change of momen- 

tum, of moment of momentum, and of energy, as follows : 

+dV=O, 
V 

&$pvdV+,dS+~pfdV 

S V 

-$s(r xv+Jo)pdV= s( 
V 

rxt,+m,)dS+S(rxf+c)pdV 
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dt 
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V s 

Here p is the density, d(. . . )/d6 is the total derivative with respect to time, r is 

the line vector of a point, V is the spatial gradient, q the heat flux vector, U the 

specific internal energy which is a function of state, and J is the average value of the 

moment of inertia at a point of the structured continuum [l and ‘21. The equation of 

energy change (1) has been written on the assumption that the work of the couple-stress 

vector m, , and that of vector 0 exerted on the translation of rotation W can be 

neglected, [l] . 

The dyadics of force-stresses 7 and couple-stresses M are related to the outward 

normal vector n by relations 

t, = n-7, m, == n-p (2) 

Taking into account (Z), we obtain from (1) 

pg z. V.T-t_ pf, (/P -- II 0, 
clt 

V-p+-pc+7x*I =pJd$ 

pd+ = 2. .vv-+( ~x.I).Vxv-t~p..vvxv+ (3) 

+ i;- pJ g; . (V xq-h)-v.q 

Here I is the unit dyadic, and symbol (X -) indicates an operation in which the 

first factors of a dyadic are subject to scalar multiplication, while the left-hand ones 

are subject to vector multiplication [S] . 

We shall represent dyadics z, Vv, VVxv, p in the following form : 
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z ;:= (a* - P) I+ 7f + fid, Et=fr*l+tLa+pdLdr 2=--pI+z 

vv ‘x v = (VV x v)” + (VV x Vjd7 vv = v*1 -+ (Vv)” * (VVJd (4) 
p” = Qk. .I, 3t* =L l/@* .I+ v* = l/s (V-v) I 

Here, $7 is the equilibrium pressure, and superscripts d and a denote symmetric and 

antisymmetric dyadics respectively, 
Using (4) and the relaticnship (7 X .I). V Xv = 2~~. .Vv, we transform Equation 

(1) of energy change, and obtain 

du 

CK 
+-g*- p)V*v+Ttd * q%)d + + kg* .(VV x vy -5 

-+-+.(vvxv)” -+” -gpJd$. (Vxv-2w)-vq (5) 
With the use of the Gibbs thermodynamic relation, and of the mass conservation law, 

as given in @J in the form 

dv 
Qi- = v*v (6) 

where y is the absolute temperature, 
volume (U = P-I) . 

S the specific entropy, and 72 the specific 

The entropy balance, obtained from (5) and (6), is expressed by 

dS 

Pz=- v++cf 
where the positive value of evolution of entropy 0 is expressed by 

o=-q*g+y-+ T 
3.1*(v*v) 4-.(vv)d + p”..(VVxv)d + 

2T 

+ pa. .(VV x vy 
23’ +&[PJ~.(vxv-24>0 

(7) 

(8) 
The thermodynamic forces [6] in Equation (8) are as foollows : the true scalar VV , 

the symmetric dyadic (TV)‘, the symmetric pseudodyadic (VV X#, the antisym- 
metric pseudodyadic (VV Xv)“, the pseudovector (V Xv - 20) and the true vector 
D y’. We note that pseudovector (V Xv - 20) and pseudodyadic (VV Xv)" are 
axial, while the vector equivalent of the antisymmetric pseudodyadic (VV Xvja( the 
symmetric dyadic (V ttjd' , and vector CrT are polar. The linear int~~e~ndence 

between the thermodynamic forces and fluxes is found from (8) by using the Curie prin- 
ciple and the Onzager reciprocity relationships [2], in the form of 

9 = - xVT + Tx&, rKd = 2lJ (VVjd, 32* = q*v.v 

d = xlzVT $ cab, pd .= cd (VVVV)~, pJ$ =2TJ,(Vxv- 24 (9) 

Here, b and d are the equivalent vectors of dyadics (VVV)~, and Pa respectively, 

It will be seen from (9) that the continuous medium model considered here is character- 
ized by thermomechanichal effects resulting from the asymmetry of the couple-stress 
dyadic 1-L. 

In those cases in which the thermomechanical and compressibility effects may be 
neglected, Equation (9) is written as follows : 
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q--ST, rs = 2q (Vvf, pa L= c, (VV x v)” 

pd = cd (VV x #, pJ$ = 2q,(V xv-h) 

Here, the values Of Scalars rl , q r , Ca , Cd , K and J are all positive. 
Noting that 2%” = --I X (7 X . l), we obtain from (3) 

Using (9) to (11) and (4) we find from (5) that 

P$= -VP-f- qv-(Vv)“-t- J&v v v.(vp.v)“+ 

+ + v x V*(VV xv)” + q.V x (20 - v >: v) + pf 

dw 2’l, -=- 
dt pJ (Vu-h), v.v 1:; 0 

The thermal conductivity equation of an incompressible medium is 

,,[$ + v.(VT)j = -- TV+ f Ta 

(‘2) 

(13) 

where cr, is the specific heat at constant pressure, and U is defined by (8) and (9) . 
For cd = (?a = 0 _ and C = 0 , Equations (12) coincide with the equations of motion 

of an incompressible viscous medium p], for which the stress dyadic is antisymmetric, 

due to the inner spin of particles 
+ = - PJ I x ?!_ 

2 clt 
With J = 0 , Equations (lo), (12) and (13) together with relationship 

2a = ~Ix(V.~dd$_.pnt_C1*+I)C) (14) 

define an incompressible viscous fluid flow in which the stress dyadic asymmetry is the 

result of presence of couple-stresses. 
When J = 0 , then Equations (lo), (12) and (14) become analogous to those of the 

linearized theory of an elastic medium in the presence of couple-stresses [S]. 

The modsi of the viscous fluid considered here is, in the general case, characterized 

by the usual rJewtonian resistance to shear, the resistance to local bending - twisting 

[5], by its relaxation properties [I and 21. and by thermomechanical phenomena , 
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